NEws NEws tfhj688 Registered user 100 Points
0Following 0Followers
Member for: 2 years
Type: Registered user
Full name:
Location:
Website: http://www.bjchangli.com/titanium-raw-materials/
About: Failure analysis of a commercially pure titanium tube in an air conditioner condenser condensers is usually more than satisfactory, even if a few tube leaks have occurred. Possible damage mechanisms by high cycle fatigue, galvanic corrosion, water-droplet erosion and by flow-assisted corrosion are discussed. These perils can be handled by a number of adequate countermeasures analysed in laboratory work and meanwhile proven by plant service.


The corrosion resistance of titanium in sea water is extremely excellent, but titanium 、nickel 、zirconium tube are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack on copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection was observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling.


Titanium is the ninth most abundant element in the earth's crust and the fourth most commonly used structural metal. In nature, it occurs only as a mineral (ore) in combination with oxygen or iron (rutile, TiO2, or ilmenite, FeTiO3).


Titanium is a lightweight material whose density is approximately 60 percent of steel's and 50 percent of nickel and copper alloys'. It was recognized in the 1950s as a desirable material for aerospace applications—especially airframe and engine components. In the 1960s and 1970s, titanium was considered for use in vessels and heat exchangers in corrosive chemical process environments. Typical applications included marine, refinery, pulp and paper, chlorine and chlorate production, hydrometallurgy, and various other oxidizing and mildly reducing chemical services.


In the 1980s and 1990s, titanium began to be used for many nontraditional applications, including tubulars for geothermal energy extraction and oil and gas production, consumer goods (such as sporting equipment), food processing, biomedical implants, and automotive components.


According to the U.S. Geological Survey (USGS), 52 million pounds of titanium were produced in the U.S. in 2000; worldwide, more than 100 million pounds were produced.


Titanium sponge is obtained by reacting rutile ore with chlorine and coke, followed by magnesium (Kroll) reduction and then vacuum distillation to remove excess magnesium and magnesium chloride. Titanium sponge is pressed into blocks to make a consumable electrode and then melted in an inert environment under vacuum to produce a titanium ingot.


Titanium is well-known for its unique combination of properties, which include low modulus of elasticity, stable and steadfast oxide film (which provides excellent corrosion and erosion resistance), and a high strength-to-density ratio.


Titanium's fabricability, weldability, and formability make possible its use in many shop and field operations. Although gas tungsten arc welding (GTAW) is the primary joining process, many other procedures are suitable. Titanium's weld characteristics are similar to those of stainless steels' or nickel alloys', with surface cleanliness and inert gas shielding being important. Fabricators often perform seal welding and butt welding operations in the shop and the field.


As for formability, titanium can be bent, cold-formed, and drawn readily. Furthermore, most industrial titanium alloys do not require stress relief annealing after cold forming.


Titanium Tube and Pipe—Types and Uses

Welded titanium tube is available in outside diameters (ODs) from 0.5 to 2.5 inches and wall thicknesses from 0.020 to 0.109 in. Welded pipe is available in standard industry sizes from 0.75 to 8 in. nominal OD with nominal wall thicknesses in Schedules 5, 10, and 40. Seamless pipe with ODs from 2 to 20 in., wall thicknesses from 0.25 to 2.0 in., and lengths to 60 feet also can be made.

Cold rolling is carried out at temperatures below which the rate of strain hardening is greater than the rate of recrystallization. When reduction is carried out above such a temperature, the process is termed hot rolling. The major quantity of titanium plate, sheet, strips and bars is processed using hot rolling techniques.


The forged billets, whose surfaces have been descaled, are rolled between 1350 and 1500°F (730 and 815°C). This temperature is approximately 200°F (110°C) lower than the forging temperature. Titanium can be continuously rolled at temperatures as low as 1100°F (595°C).


As the thickness of the material to be rolled is decreased, the temperature of the piece must be considerably lowered to minimize surface contamination. A careful choice of pass sequences to obtain a certain reduction must be made when rolling titanium. Pass sequence refers to the number of reductions taken and percentage reduction of the piece per pass.


Continuous sheet and strip are best cold- or hot rolled with the application of back and forward tensions to reduce the friction in the roll gap. In cold rolling thin sheet, extremely tight roll settings are required to produce uniform cross section.


Extrusion is the shaping of metal into a chosen continuous form by forcing it through a die of the desired shape. Titanium can be extruded to produce rounds, squares, tubes, and other simple shapes. Typical extrusion temperatures range between 1800 and 1900°F (980 and 1040°C).

Activity by tfhj688

Score: 100 points (ranked #4,088)
Title: NEws NEws
Media: 0
Comments: 0
Replies: 0
Voted on: 0 Media, 0 Comments
Gave out: 0 up votes, 0 down votes
Received: 0 up votes, 0 down votes
Benvenuti in FungoepigeoGallery, dove è possibile aggiungere video, immagini e ricevere commenti da altri membri della comunità.