About:
|
My wife often asks me why I still do consulting work. She wonders why I happily leave
the comfort of my office to crawl all over hot, dirty, smelly <a
href="https://langvicmachinery.com/" target="_self">hydraulic equipment</a>.<br/>
</p>
<p>
For starters, I actually enjoy it. Secondly, it keeps me sharp. But perhaps most
importantly, it keeps me in touch with the issues that hydraulic equipment users must
grapple with.
</p>
<p>
<br/>
</p>
<p>
One of the lessons I've learned over the years is that in the early stages of a
consulting assignment, it is better to ask good questions rather than dispense good
advice.
</p>
<p>
<br/>
</p>
<p>
Pump Failures
</p>
<p>
A recent client had a series of catastrophic pump failures. These pumps were
achieving less than half their expected service life. So naturally, the company wanted
some answers. At our first meeting, the client opened proceedings with a brief history of
the machine and an account of the events leading up to the failures. He then pushed a
stack of oil analysis reports across the table.
</p>
<p>
<br/>
</p>
<p>
Ask the Basic Questions
</p>
<p>
After taking notes on what I'd just been told, I fired off my first question:
"What is the system's normal operating temperature?" The response was
stunned silence. Client shrugs his shoulders.
</p>
<p>
<br/>
</p>
<p>
"OK, what is the system's usual operating pressure range?" Blank look
from client. "I don't know; we don't monitor either of those things."
</p>
<p>
<br/>
</p>
<p>
At the end of this meeting, we walked through the control room. Both the operating
pressure and temperature were displayed on the default PLC screen - albeit along with a
lot of seemingly more important production information. Say no more.
</p>
<p>
<br/>
</p>
<p>
But could you answer these two basic questions about the vital signs of your
hydraulic equipment, <a href="http://www.langvicmachinery.com/rebar-tools/"
target="_self">rebar tools</a>, <a href="http://www.langvicmachinery.com/floor-grinder/"
target="_self">floor grinder</a>, <a href="http://www.langvicmachinery.com/grouting-
pump/" target="_self">grouting pump</a>? If not, I strongly recommend you make the effort
to get to know your hydraulic equipment better.
</p>
<p>
<br/>
</p>
<p>
Gathering Information
</p>
<p>
This information is easy to collect. It can give valuable insight to the health of
your equipment and is essential data if failure analysis is required. Here is how I
recommend you accomplish this task:
</p>
<p>
<br/>
</p>
<p>
First, you need an infrared thermometer, also called a heat gun. If you don't
have one, you'll need to invest around 100 bucks to get one and then familiarize
yourself on how to use it.
</p>
<p>
Next, using a permanent marker or paint stick, draw a small target on the hydraulic
tank below minimum oil level and away from the cooler return. Label it 1. This marks the
spot where you'll take your tank oil temperature readings.
</p>
<p>
<br/>
</p>
<p>
By the way, the purpose of these targets is that regardless of who takes the
temperature readings, they'll be taken from the same place each time.
</p>
<p>
If the system is a closed-circuit hydrostatic transmission, mark a convenient
location on each leg of the transmission loop and number those locations as 2 and 3. Skip
this step for open-circuit <a href="http://www.langvicmachinery.com/hydraulic-
equipments/" target="_self">hydraulic systems</a>.
</p>
<p>
Next, mark a target on the heat exchanger inlet and outlet and number these 4 and 5,
respectively. This records the temperature drop across the cooler. The benefit of this
step is that if the oil flow rate through the exchanger and the temperature drop across
it are known, the actual heat rejection of the exchanger can be calculated.
</p>
<p>
<br/>
</p>
<p>
And if the system is overheating, knowing the actual heat rejection of the exchanger
can help determine whether the problem is the result of an increase in heat load (due to
an increase in internal leakage, for example) or whether the problem lies in the cooling
circuit itself.
</p>
<p>
<br/>
</p>
<p>
For example, if a <a href="https://langvicmachinery.com/" target="_self">hydraulic
system</a> with an input power of 100 kilowatts is overheating, and the actual heat
rejection of the exchanger is 30 kilowatts, then the efficiency of the system has fallen
below 70 percent. Therefore, an increase in heat load is the likely cause. On the other
hand, if the exchanger is rejecting only 10 kilowatts of heat (which in this example
equates to 10 percent of input power), then it's likely there is a problem in the
cooling circuit or there is insufficient installed cooling capacity.
</p>
<p>
Install a pressure gauge or transducer to record operating pressure if one is not
already available. If the system is a closed-circuit hydrostatic transmission, install a
similar device to record charge pressure.
|