0 votes
Application of Moving Bed Biofilm Reactor (MBBR)

Application of Moving Bed Biofilm Reactor (MBBR)

This review paper present the MBBR and IFAS technology for urban river water purification including both conventional methods and new emerging technologies. The aim of this paper is to present the MBBR and IFAS technology as an alternative and successful method for treating different kinds of effluents under different condition. There are still current treatment technologies being researched and the outcomes maybe available in a while. The review also includes many relevant researches carried out at the laboratory and pilot scales. This review covers the important processes on MBBR and IFAS basic treatment process, affecting of carrier type and influent types. However, the research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. The research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. To this end, the most feasible technology could be the combination of advanced biological process (bioreactor systems) including MBBR and IFAS system.

The BioCellTM media are suitable for a moving bed biofilm reactor (MBBR) system to provide a self-shedding, self-regulating growth biofilm treatment process. The media can be used for MBBR treatment alone or as an integrated fixed membrane activated sludge (IFAS) process to enhance the effective capacity of existing activated sludge systems.

The BioCellTM medium used in MBBR media or IFAs is a continuous motion caused by air injection and agitator. Specific density of the media can be adjusted between 0.95-1.05 g/cm3 according to customer requirements. However, it should be considered that with the formation of biofilm on the surface of the medium, the actual density of the carrying media will increase.

The main characteristic of Moving Bed Biological Reactor (MBBR) configurations is that there is no sludge recycle from a secondary clarifier. MBBR is essentially a simple, once-through process, where all of the biological activity takes place on the biomass carriers. MBBR is usually followed by a solids separation system such as a secondary clarifier or DAF, in order to separate bio-solids produced in the process from the final effluent. The main advantage of MBBR is robust and simple reduction of soluble pollutants (soluble BOD or COD, NH4 +, etc.), with minimal process complexity, utilizing a significantly smaller footprint when compared to conventional aerobic treatment methods. MBBR is typically used for either high load industrial applications or for robust simple-to-operate municipal facilities.

The Integrated Fixed-film Activated Sludge (IFAS) process combines the advantages of conventional activated sludge with those of biofilm systems by combining the two technologies in a single reactor. Typically, an IFAS configuration will be similar to an activated sludge plant (utilizing all of the different process configurations such as MLE, UCT, Bardenpho, etc.), with biomass carriers introduced into carefully selected zones within the activated sludge process. This allows two distinct biological populations to  act  synergistically, with the MLSS degrading most of the organic load (BOD), and the biofilm creating a strongly nitrifying population for oxidation of the nitrogenous load (NH4+). IFAS is typically used to upgrade existing plants in order to enable extensive Nitrogen removal, or in designing new plants with significantly smaller footprints for extensive BOD and Nitrogen removal.

 The diffuser is the special design for MBBR bio carrier media aeration system. The coarse-bubble design is employed to mix the suspended media evenly throughout the reactor  while  providing  the  mixing energy required to slough old biofilm from the internal surface area of the media and maintain the dissolved oxygen required  to  support the biological treatment process.

 

Coarse bubble diffuser is made of stainless steel (SUS304 or SUS316L is optional).The  coarse bubble diffuser provides maximum aeration and mixing efficiency.The standard length of diffuser is 600 mm. A 600mm long diffuser can achieve a 1250mm air release circumference.It has a service life of over 15 years. 

The dissolved air flotation(DAF) system is designed to remove suspended solids(TSS), biochemical oxygen demand (BOD5), and oils and greases (O&G) from wastewater. Contaminants are removed by using a dissolved aqueous solution of water produced by injecting air into the recirculating stream of clear DAF effluent under pressure. The recycle stream is then mixed with the upcoming wasterwater in the internal contact chamber. Air bubbles and contaminants rise to the surface and form a floating bed material that is removed by a surface skimmer into the internal hopper for further processing.

The initial section of dewatering drum is the Thickening Zone, where the solid-liquid separating process takes place and where the filtrate will also be discharged. The pitch of the screw and the gaps between the rings decrease at the end of dewatering drum, hence increasing its internal pressure. At the end, the End Plate further increases the pressure, so as to discharge dry sludge cake.

Albe Advance Group is the leading industrial water treatment solution provider in Malaysia with decades of experience in providing quality water treatment solutions. We prioritise in providing our clients with a one-stop water treatment centre for industrial water treatment project and services. Having doubts on industrial water treatment qualities? Contact us and let our skilled professionals provide you with a consultation in water treatment program.

In traditional activated sludge plants, biomass form flocks are kept suspended in wastewater and then separated from treated water in a settler; most biomass is re-circulated to the biological tanks, the excess is extracted and sent to sludge treatment.

Luigi Falletti, University of Padova

This technique is the most widespread and well known in the world to treat biodegradable municipal and industrial wastewater (including paper mill wastewater); but it has also disadvantages: it requires large tanks, and pollutant removal efficiency is strongly affected by sludge settleability.

In moving bed biofilm reactors (MBBR) biomass grows as biofilm on plastic carriers that move freely into wastewater; tanks are similar to activated sludge reactors, and they have screens or sieves to avoid carriers’ loss; aerated reactors are mixed by aeration itself, while anoxic and anaerobic reactors are mixed mechanically. MBBR can be classified into two categories:

  1. pure biofilm reactors: biomass grows only on carriers without suspended sludge and without sludge recirculation;

  2. hybrid reactors: in the same tank biomass grows both as biofilm on carriers and as suspended sludge; part of sludge is re-circulated.

MBBR have several advantages if compared to traditional activated sludge tanks and to fixed biofilm reactors (trickling filters, submerged biofilters):

-biofilm has high specific activity, therefore high pollutant removal efficiencies can be achieved with smaller tanks than the ones required by activated sludge;

-in plants with a series of MBBR a specialized biomass grows in each tank;

–risk of clogging with MBBR&n

71 views Aug 20, 2021
rivacits NEws NEws 260 points

Popular tags

gummies cbd keto reviews
Benvenuti in FungoepigeoGallery, dove è possibile aggiungere video, immagini e ricevere commenti da altri membri della comunità.

Your Comment

Your name to display (optional)
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:

To avoid this verification in future, please log in or register.