0 votes
A Beginner's Guide To Acoustic Treatment

An account of an acoustic newbie's journey from bare walls to a well‑balanced, sonically pleasant space.

The physics of the propagation of sound is immensely complicated, and when the assortment of materials that make up the walls, floors and ceiling (plus any windows, doors and furniture) are added to the equation, it's very difficult to predict what will happen to sound waves once they've left their source. What's more, every room is different, and it's not just the dimensions that will dictate how the room will sound... Imagine two rooms of the same shape and size. One has two‑metre-thick concrete walls, and the other a single‑layer plasterboard stud-wall. Even with those brief, albeit extreme descriptions, you probably know already that the two rooms will sound very different. Add in the multitude of room shapes, sizes, wall‑construction methods and surfaces found in home studios, and it becomes impossible to provide a one-size-fits-all guide to acoustic panel treatment.

The subject of acoustics is regularly discussed in SOS, but plenty of readers still ask for the subject to be covered from a much more basic starting point. What follows is a look at installing acoustic treatment from a complete beginner's perspective: some basic, essential information, along with a bit of advice from acoustics professionals that should give you the confidence to get started. I'll follow this up by taking you step by step through my own recent experience of treating a room.

Why Bother With Acoustic Treatment?

Untreated rooms have an uneven frequency response, which means that any mixing decisions you make are being based on a sound that is 'coloured', because you can't accurately hear what's being played. In short, you can't possibly tell how your mix will sound when played back anywhere else. It isn't just an issue for mixing, though, because any recordings you make of acoustic instruments will bear all the hallmarks of the space in which you record them. That may be a good thing if the space in question is Ocean Way or SARM West, but probably preposterously bad if it's your living room or bedroom. So, if you want your mixes to transfer well, and your recordings to be free of room 'honk', you need to pay attention to the acoustic properties of your environment — no matter how good the gear you're using.

First Things First

The first thing to grasp is the outcome you want to achieve. It's a common misconception that acoustic treatment with acoustic ceilings or acoustic baffles should kill all reverberation, and that you want a room covered floor‑to‑ceiling with foam tiles: this isn't what you're aiming for. You also need to bear in mind the limitations imposed by space and budget: most home studios are small in comparison with the Abbey Roads and AIR Lyndhursts of this world, and many home‑studio owners simply don't have the funds for bespoke treatment solutions.

So what is the aim? Andy Munro, acoustic design specialist, remarks, "acoustic design is the science that restores a neutral sound balance”. Applying that science means interfering with the path of sound to control the sound energy. Jorge Castro, chief acoustician at Vicoustic, says that "in the case of affordable treatment, we need to control the energy of the sound first. Then we can take care of the sound quality. With small spaces, bass frequencies are always a problem, and we should control the low frequencies as much as we can.” In fact, he continues, "In small rooms, I've never heard people saying they have too much absorption of low frequencies.”

Absorption & Diffusion: What, Where, Why?

To achieve the right balance, there are two main approaches: absorption and diffusion. Products that have absorptive properties include foam and rigid mineral-wool (see the 'DIY & Rockwool' box), and they 'soak up' the sound energy, turning it into heat, through friction. Most effective on high‑frequencies, absorption is essential for reducing flutter echoes and for taming bright‑sounding or 'ringy' rooms. Bass trapping is also a type of absorption, but is specifically designed to absorb low‑frequency energy. A clever combination of soft, hard, thick and thin materials, including air, is used to make the most efficient bass trap, and an empty gap between the wall and the back of the trap helps to make it even more effective.

Diffusion is the scattering of sound energy using multi‑faceted surfaces. Diffusers are commonly made of wood, plastic, or even polystyrene. Jorge Castro explains: "diffusion helps in energy control and improves the sound quality in frequencies throughout the middle and high range of the spectrum, and also improves sweet‑spot image.” The 'sweet spot' is the place between the speakers where you should be sitting to get the best stereo image (imagine that your head and the two speakers form an equilateral triangle). That pretty much concludes the theory: now for the practice!

Getting Started

Before undertaking this project, I'd read plenty about acoustics, but had never attempted to properly treat a room myself: the nearest I'd come was propping foam panels against the walls to tame flutter in the spare‑room‑cum‑studio of my rented house. I hadn't been able to glue or screw anything to the walls, for fear of incurring my landlord's wrath, and the thought of retouching the paintwork after tearing strips of self‑adhesive velcro pained me too! So this was very much a learning experience.

The space in question included an area that would provide a reasonable‑sized live room, and another that would serve as a small control room, and although both were important, I really wanted to get the performance space right. I decided that I'd buy commercially available panels, because I simply didn't have the time, space or inclination for the DIY option. Most manufacturers of acoustic products also offer a consultation service, and they often have free on‑line calculators to help you decide on a suitable treatment option, too, so even if you choose the DIY route this can be a sensible place to start, and fabric acoustic panels are also available.

I chose to get my treatment from Vicoustic, a company relatively new to the UK acoustic‑treatment market who make a range of products for studios and home theatres. I told them that, as this was the only live room for a small project studio, it needed to be quite versatile, with both a 'dead' corner for dry recordings and a more ambient space to liven up acoustic recordings where needed. I'd expected a solution with almost complete wall coverage, foam panels and diffusers covering every square inch, but Vicoustic came back with a plan that surprised me, which suggested that total coverage wasn't necessary.

In fact, Jorge says that the typical home studio needs only between 30 and 40 percent coverage to adequately treat it. So don't go over the top: remember that we're trying to control the energy, or "restore the natural sound balance,” and not to kill the sound completely.

As for the proportion of diffusion to absorption, Jorge says, "some believe it should be 50 percent absorption and 50 percent diffusion. In the home studio, because of budget and space constr

150 views Aug 6, 2021
spherend NEws NEws 200 points

Popular tags

gummies cbd health australia
Benvenuti in FungoepigeoGallery, dove è possibile aggiungere video, immagini e ricevere commenti da altri membri della comunità.

Your Comment

Your name to display (optional)
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:

To avoid this verification in future, please log in or register.